

CO₂ CAPTURE BY SUB-AMBIENT MEMBRANE OPERATION

Pittsburgh, PA I July 8, 2012 I DOE NETLCO2 Capture Technology Meeting

AL DRTC Separations

- S. Kulkarni
- D. Hasse
- J.P. Tranier
- E. Corson
- J. Brumback
- E. Sanders

DOE/NETL Project Manager: Andrew O'Palko

Acknowledgment

Some material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004278

Disclaimer

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Air Liquide: Key Information

A world leader in industrial and medical gases

- Sales € 14.5 billion (~\$20 billion) (2011)
- Over 1 million customers in 80 countries
- 46,500 employees worldwide
- 60% of R&D budget devoted to developing technologies designed to preserve the environment (energy savings, cleaner production, future energy development)

Proposed CO₂ Capture technology leverages AL strengths

- **MEDAL** Leading membrane manufacturer for N_2 , H_2 and CO_2 applications
- Air Liquide core expertise in gas separation, cryogenics and gas handling
- Air Liquide -Strong coal oxy-combustion program

CO₂ Capture by Sub-Ambient Membrane Operation

DOE NETL Award No. DE-FE0004278 Funding : DOE - 1.266 M\$; Cost share - 0.32 M\$ Period of Performance: 10/01/2010 through 9/30/2012

Air Liquide Engineering (Engineering process design) Champigny, France

Air Liquide Advanced Technologies US MEDAL (Membrane Supplier) Newport, DE

American Air Liquide Delaware Research & Technology Center (Separations, Analysis..) Newark, DE

2010 Post-combustion CO₂ Capture Projects

Project Manager: Andrew O'Palko

Pittsburgh NETL Conference

PUBLIC VERSION

Post combustiion CO₂ capture from air fired coal flue gas

DOE criteria

- 90+% CO₂ recovery
- CO₂ product purity consistent with sequestration requirements
- < 35% increase in (20-year levelized) cost of electricity

Gas Transport through Polymeric Membranes

Permeability

- $\mathcal{P} = \mathsf{D}^*\mathsf{S}$
 - Diffusivity- Related to size (Kinetic Diameter)

 Solubility - Related to condensability of penetrant (Critical Temperature)

Selectivity

$$\alpha = \left[\frac{\mathcal{P}_1}{\mathcal{P}_2}\right] = \left[\frac{D_1}{D_2}\right] \left[\frac{S_1}{S_2}\right]$$

Both solubility and diffusivity favor CO_2 transport CO_2 is selectively transported over N_2

Temperature dependence of gas transport in Membranes

Temperature dependence obeys the Arrhenius equation

$$\mathsf{P} = \mathsf{P}_{\mathsf{o}} \exp \{ -\Delta \mathsf{E}_{\mathsf{A}}^* / \mathsf{R} (1/\mathsf{T}-1/\mathsf{T}_{\mathsf{o}}) \}$$

but P= D*S

$$\mathsf{D} = \mathsf{D}_{\mathsf{o}} \exp \{ -\Delta \mathsf{E}_{\mathsf{A}} / \mathsf{R} (1 / \mathsf{T} - 1 / \mathsf{T}_{\mathsf{o}}) \}$$

$$S = S_o exp \{ -\Delta H_s/R (1/T-1/T_o) \}$$

 $\Delta \mathsf{E}_{\mathsf{A}}^* = \Delta \mathsf{E}_{\mathsf{A}} + \Delta \mathsf{H}_{\mathsf{s}}$

 ΔE_A is always positive; energy required to execute a diffusional jump ΔH_s is always negative; $\frac{1}{4}$ to $\frac{3}{4}$ heat of condensation at normal boiling point

	CO ₂	N ₂
T _c (°K)	304	126
D(A)	3.3	3.6

 $\Delta E_{A}^{*}(CO_{2})$ is always less than $\Delta E_{A}^{*}(N_{2})$

 $\alpha(CO_2/N_2)$ increases exponentially with decreasing temperature

7

Sub-Ambient Temperature Membrane Performance

For a *select few* polymer membranes temperature can be used to dramatically improve performance Selectivity can be increased with minimal change in CO_2 permeance

The effect is due to a matching of the activation energy for diffusion and the heat of sorption.

A commercial AL Membrane operated at less than -10 $^{\circ}$ has unique combination of high CO₂ permeance and CO₂/N₂ selectivity

Pittsburgh NETL Conference

Intrinsic permeability at -30°C inferred from known film data at RT + fiber data at RT and -30°C

8 07/09/2012 PUBLIC VERSION

Cold Membrane Process Based on Existing AL Membrane

Hollow fiber membranes are providing cost effective solutions (~ \$20/m²) in very large (up to Bscfd) CO₂/natural gas separation applications

07/09/2012

Cold Membrane Process Design Concept

Pre-concentration of CO₂ by highly selective cold membrane before liquefier

Efficient recovery of compression energy

- BFW generation
- > 2 retentate expansions
- > Energy integration between membrane / liquefier through heat exchange
 - Retentate expansion provides cooling for liquefier
 - > Liquid CO_2 pumped to sequestration pressure

10

Hybrid Membrane + CPU Configuration

PUBLIC VERSION

11

07/09/2012

Pittsburgh NETL Conference

Air Liquide, world leader in gases for industry, health and the environment

Detailed Project Objectives

- 1. Verify mechanical integrity of commercial membrane module & structural components at sub-ambient temperatures.
- 2. Demonstrate high permeance/selectivity performance with a commercial membrane module in a bench-scale test skid
- 3. Demonstrate long term operability of the sub-ambient temperature membrane skid
- 4. Evaluate effect of expected contaminant levels (SO_x, NO_x) on membrane performance (lab tests)
- 5. Refine process simulation for integrated process; recalculate LCOE
- 6. Based on LCOE results, prepare PFD for potential field test

Project Main Tasks and Timeline

		Project Start: 10-1-2010 End 9-30-2012							
Task /		Project Year 1			Project Year 2				
Subtask	Task description	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	Kickoff meeting								
F	PHASE 1: Experimental work								
2 Demonstrate commercial scale bundle operation at sub-ambient temperature									
	Fabricate closed loop sub-ambient			NJ 1		-			
2.1	CO2/N2 test system			IVI I					
	Test mechanical integrity of								
2.2	bundle/housing					M 3			
2.3	Map bundle performance								
2.4	Long term test at cold temperature								
3	Laboratory Scale Flue Gas Contaminant Testing								
	Modify lab cryo-test bench for low								
3.1	temperature SOx and NOx testing								
	Measure SOx and NOx membrane								
3.2	performance on mini-permeator				M 2				
-	PHASE 2: Design work								
4	Sub-ambient Membrane/Cryogenic System Design								
	Use Phase I data to estimate LCOE								
4.1	increase for CO2 capture.								
	With DOE input, develop PFD for slip-								M 4
4.2	stream demonstration								101 4
	In progress								
	Finished								
	Projected								

Task 2 : Demonstrate commercial scale bundle operation at sub-ambient temperature

Task 3 : Laboratory Scale Flue Gas Contaminant Testing

Task 4 : Sub-ambient Membrane/Cryogenic System Design

13

Pittsburgh NETL Conference

Air Liquide, world leader in gases for industry, health and the environment

Task 2-M2.1: Skid in Operation for over a year

14 07/09/2012

Cold Membrane Module and Heat Exchanger

- Main cooling is provided by expansion of pressurized residue stream
- Housed in cold box to compensate for heat leaks

5 07/09/2012

Large Cold Box...Commercial Freezer

Cold box is oversized

- Lower cost than insulated cold box Provides easy access for modifications Provides additional space required for larger scale field test
- JT cooling provides sufficient cooling

20-25 TPD CO₂

1 MWe

Task 2-M2.2: Mechanical Integrity Test of 12" Bundle

- 12" bundle operated for 2 months
- Exposed to pressures up to 200 psig, temperatures as low as -60°C and CO_2 concentrations from 15% to 30%
- Successfully completed multiple start-ups and shut-downs (Cool downs and warm-up) and a few ESD's
- No signs of mechanical degradation
 - Stable performance demonstrated -(1st week separation data similar to 6th week separation data)
 - Specified O-ring seals were intact
 - Designed compressed gas flow was insufficient to allow accurate backcalculation of membrane performance. 6" bundle used for all performance measurements.

Task 1-M2.3 & 2.4: Endurance Testing with 6" Bundle

18 07/09/2012

Air Liquide, world leader in gases for industry, health and the environment

TASK 2: Summary of DOE Skid Test Findings

MEDAL membrane modules are compatible with sub-ambient service

- 12" bundle passed mechanical integrity test
- 6" bundle performance stable over 6 months of operation

Commercial module (6" bundle) permeance higher and CO₂/N₂ selectivity was lower than obtained on laboratory permeators

- Performance change insufficient to change interest in the process
- Favorable trade-off between capital and operating cost 7% increase in specific energy of capture 40% decrease in membrane surface area

Testing must be extended to determine module lifetime

Task 3 M3.1: Laboratory Testing for Acid Gas Separation

How do acid gases split in cold membrane process?

- Existing low temperature laboratory test system modified for acid gas testing
 - Concentration analysis performed by GC / IR

$20\% \text{ CO}_2 \text{ in } \text{N}_2$ $100 \text{ ppm } \text{SO}_2 \text{ or } \text{NO}_2 \text{ or } \text{NO}$

07/09/2012

PUBLIC VERSION

Pittsburgh NETL Conference

TASK 3 M3.2 Summary: Permeance of Acid Gases

20% CO_2/N_2 mixtures with ~ 100 ppm each acid gas, 150 psi

21 07/09/2012

Risk Factors Addressed by Project Testing

Risk Factor	Mitigation	Status			
Uneven contraction of module components may cause performance degradation	MEDAL Technology support to change components if this problem is diagnosed	Mechanical integrity test passed (12" bundle)			
Non-ideality in commercial module may degrade separation performance	Some slack in economics (selectivity > 90).	Fiber in bundle is more productive / less selective. Operate at -45C			
Acid gas component effect	Lab measurements to demonstrate effect if any	SO2, NO2 and NO permeance verified at lab scale			
Residual dust effect	If field experience indicates a problem, shell-side operation will be considered	TBD			

07/09/2012

22

Path Forward (Task 4)

Experimentally validated commercial membrane performance is slightly lower selectivity and higher flux than assumed for original process cost calculation

Favorable trade-off between capital and operating cost

- ~ 7% increase in specific energy of capture
- ~ 40% decrease in membrane surface area

Air Liquide Engineering finalizing budgetary capital cost estimation for conceptual 550MW facility based on vendor quotes and internal cost estimation tools as basis for LCOE recalculation

PUBLIC VERSION

Project Objectives achieved on time and on budget

Cost estimation details to be discussed with DOE / NETL for consensus on potential to meet DOE targets

Positive consensus, PFD for potential field test will be developed (Task 4.2)

Development Roadmap

Conceptual 550 MWe Membrane footprint

Pittsburgh NETL Conference

PUBLIC VERSION

26

Acknowledgements

DOE/NETL

Andrew O'Palko – NETL Project Manager

Air Liquide

- Ryan Adelman, Engineering Support Group
- Facilities Team
- Dean Kratzer, Mike Bennett, and other members of the Separations Group
- Karl Beers, Bob Boyle and colleagues at MEDAL
- Vianney Meunier, Nicola Chambron, M Leclerc at Air Liquide Engineering

07/09/2012

27

End of presentation Thank you for your attention

